Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35276009

RESUMO

Neurons are a highly specialized cell type only found in metazoans. They can be scattered throughout the body or grouped together, forming ganglia or nerve cords. During embryogenesis, centralized nervous systems develop from the ectoderm, which also forms the epidermis. How pluripotent ectodermal cells are directed toward neural or epidermal fates, and to which extent this process is shared among different animal lineages, are still open questions. Here, by using micromere explants, we were able to define in silico the putative gene regulatory networks (GRNs) underlying the first steps of the epidermis and the central nervous system formation in the cephalochordate amphioxus. We propose that although the signal triggering neural induction in amphioxus (i.e., Nodal) is different from vertebrates, the main transcription factors implicated in this process are conserved. Moreover, our data reveal that transcription factors of the neural program seem to not only activate neural genes but also to potentially have direct inputs into the epidermal GRN, suggesting that the Nodal signal might also contribute to neural fate commitment by repressing the epidermal program. Our functional data on whole embryos support this result and highlight the complex interactions among the transcription factors activated by the signaling pathways that drive ectodermal cell fate choice in chordates.


Assuntos
Redes Reguladoras de Genes , Anfioxos , Animais , Epiderme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Exp Zool B Mol Dev Evol ; 336(4): 376-385, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33539680

RESUMO

As interest increases in ecological, evolutionary, and developmental biology (Eco-Evo-Devo), wild species are increasingly used as experimental models. However, we are still lacking a suitable model for marine fish species, as well as coral reef fishes that can be reared at laboratory scales. Extensive knowledge of the life cycle of anemonefishes, and the peculiarities of their biology, make them relevant marine fish models for developmental biology, ecology, and evolutionary sciences. Here, we present standard methods to maintain breeding pairs of the anemonefish Amphiprion ocellaris in captivity, obtain regular good quality spawning, and protocols to ensure larval survival throughout rearing. We provide a detailed description of the anemonefish husbandry system and life prey culturing protocols. Finally, a "low-volume" rearing protocol useful for the pharmacological treatment of larvae is presented. Such methods are important as strict requirements for large volumes in rearing tanks often inhibit continuous treatments with expensive or rare compounds.


Assuntos
Criação de Animais Domésticos/métodos , Peixes/fisiologia , Ciência dos Animais de Laboratório , Animais , Larva/crescimento & desenvolvimento
3.
Sci Rep ; 9(1): 19491, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862916

RESUMO

Clownfishes and sea anemones form an intriguing long-term association, but the mechanism underlying this symbiosis is not well understood. Since clownfishes seem to cover themselves with sea anemone mucus, we investigated the microbiomes of the two partners to search for possible shifts in their compositions. We used a 16S rRNA gene sequencing strategy to study the dynamics of the microbiota during the association between the clownfish Amphiprion ocellaris and its host Heteractis magnifica under laboratory conditions. The experiment conducted in aquaria revealed that both clownfish and sea anemone mucus had specific signatures compared to artificial sea water. The microbiomes of both species were highly dynamic during the initiation of the symbiosis and for up to seven days after contact. Three families of bacteria (Haliangiaceae, Pseudoalteromonadacae, Saprospiracae) were shared between the two organisms after symbiosis. Once the symbiosis had been formed, the clownfishes and sea anemone then shared some communities of their mucus microbiota. This study paves the way for further investigations to determine if similar microbial signatures exist in natural environments, whether such microbial sharing can be beneficial for both organisms, and whether the microbiota is implicated in the mechanisms that protect the clownfish from sea anemone stinging.


Assuntos
Anêmonas-do-Mar/microbiologia , Simbiose/fisiologia , Animais , Biodiversidade , Evolução Biológica , Microbiota/genética , Microbiota/fisiologia , Perciformes/microbiologia , RNA Ribossômico 16S/genética , Simbiose/genética
4.
BMC Microbiol ; 16(1): 157, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27435866

RESUMO

BACKGROUND: Biofloc technology (BFT), a rearing method with little or no water exchange, is gaining popularity in aquaculture. In the water column, such systems develop conglomerates of microbes, algae and protozoa, together with detritus and dead organic particles. The intensive microbial community presents in these systems can be used as a pond water quality treatment system, and the microbial protein can serve as a feed additive. The current problem with BFT is the difficulty of controlling its bacterial community composition for both optimal water quality and optimal shrimp health. The main objective of the present study was to investigate microbial diversity of samples obtained from different culture environments (Biofloc technology and clear seawater) as well as from the intestines of shrimp reared in both environments through high-throughput sequencing technology. RESULTS: Analyses of the bacterial community identified in water from BFT and "clear seawater" (CW) systems (control) containing the shrimp Litopenaeus stylirostris revealed large differences in the frequency distribution of operational taxonomic units (OTUs). Four out of the five most dominant bacterial communities were different in both culture methods. Bacteria found in great abundance in BFT have two principal characteristics: the need for an organic substrate or nitrogen sources to grow and the capacity to attach to surfaces and co-aggregate. A correlation was found between bacteria groups and physicochemical and biological parameters measured in rearing tanks. Moreover, rearing-water bacterial communities influenced the microbiota of shrimp. Indeed, the biofloc environment modified the shrimp intestine microbiota, as the low level (27 %) of similarity between intestinal bacterial communities from the two treatments. CONCLUSION: This study provides the first information describing the complex biofloc microbial community, which can help to understand the environment-microbiota-host relationship in this rearing system.


Assuntos
Bactérias/classificação , Intestinos/microbiologia , Microbiota , Penaeidae/microbiologia , Frutos do Mar/microbiologia , Microbiologia da Água , Compostos de Amônio/análise , Animais , Aquicultura/métodos , Bactérias/genética , Sequência de Bases , Biodiversidade , Clorofila/análise , Clorofila A , Meio Ambiente , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Concentração de Íons de Hidrogênio , Dióxido de Nitrogênio/análise , RNA Ribossômico 16S/genética , Água do Mar , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...